Seminar on Material R&T



The Seminars on MAterials Research & Technology Lecture Series is an initiative from the Materials Research and Technology department at LIST that will revolve around the department’s five core pillars:

  • Nanomaterials,
  • Nanotechnology, 
  • Scientific instrumentation and process technology,
  • Structural composites,
  • Functional polymers.


The SMAR&T Lecture Series particularly aims to introduce LIST’s Materials research fields and the Luxembourg research community at large to cutting-edge trends in materials technology while fostering novel research programmes.

The SMAR&T series will host world-renowned experts from academia and industry to share their insights, enhancing the knowledge base within LIST’s Materials department and Luxembourg as a whole.

With a total of 10 planned lectures, the SMAR&T series seeks to bridge the gap between different and diverse research domains while fostering the exchange of ideas.

Through informal and extended discussions, the series will also encourage interaction and engagement among researchers and SMAR&T speakers, potentially sparking research collaborations and novel initiatives. To enable this, at every SMAR&T Lecture interested researchers will be able to meet individually with the SMAR&T seminar speaker to exchange research ideas.

Join the 4th SMAR&T Lecture either virtually of physically on March 14th!


September 21st, Dr. S. "Pete" Worden: Life in the Universe and Private Sector Space Science Initiatives

Dr. S. “Pete” Worden

Dr. S. “Pete” Worden, (Brig Gen, USAF, Ret, PhD) is Chairman of the Breakthrough Prize Foundation and Executive Director of the foundation’s ‘Breakthrough Initiatives’. He holds a Bachelor of Science degree in Physics and Astronomy from the University of Michigan and a PhD in Astronomy from the University of Arizona. After several US Air Force positions and a research professorship in astronomy at the University of Arizona, Dr. Worden was Director of NASA’s Ames Research Center until retiring on March 31, 2015. From 2017 to the present, Brigadier General Worden is an Advisor to the Luxembourg Space Agency and was appointed as a Knight-Commander of the Order of Merit of the Grand Duchy of Luxembourg in 2018 for his space services.

Presentation Title

Life in the Universe and Private Sector Space Science Initiatives


The Breakthrough Initiatives are a suite of scientific space exploration programs searching for signatures of life beyond Earth. These efforts include Breakthrough Listen, a search for technosignatures and advanced life, Breakthrough Watch, a ground and space-borne program to support direct imaging of nearby exoplanets, and Breakthrough Starshot, an interstellar programme to develop lightsail probes destined to Alpha Centauri.

The Alpha Centauri system has been center stage in scientific discoveries recently, and is a focus across the breadth of the Breakthrough Initiatives. As the closest star and planetary system to our Solar System at ~1.3 pc, our neighbor is intriguing. Multiple observations are ongoing, and plans are drawn up for an eventual visit. In the past few years, several planets have been confirmed orbiting Proxima Centauri – one appears to be earth sized and in the star’s “habitable zone.” Non-thermal radio emission has been confirmed from Proxima and appears modulated by the planet Proxima b. There is even, albeit likely to be terrestrial interference, narrow band signals from the star.

The presentation will cover recent astronomical efforts related to this exciting nearby star system as well as life-detection missions within our own solar system.


December 5th, Prof. Ken Hara: How plasmas can help materials (and vice versa): from semiconductors to aerospace applications

Prof. Ken Hara


Ken Hara is an Assistant Professor of Aeronautics and Astronautics at Stanford University. He received a Ph.D. in Aerospace Engineering and a Graduate Certificate in Plasma Science and Engineering from the University of Michigan, and B.S. and M.S. in Aeronautics and Astronautics from the University of Tokyo. Prior to joining Stanford University, he was a Visiting Research Physicist at Princeton Plasma Physics Laboratory as a Japan Society for the Promotion of Science Postdoctoral Fellow and an Assistant Professor in the Department of Aerospace Engineering at Texas A&M University. His research interests include electric propulsion, low temperature plasmas, plasma physics (plasma-wall interactions, plasma-wave interactions), data-driven modeling, rarefied gas flows, and computational fluid and plasma dynamics. He has received awards from IEEE, Electric Rocket Propulsion Society, Plasma Sources Science and Technology, Air Force Office of Scientific Research, and Office of Naval Research, Department of Energy.  

Presentation Title

How plasmas can help materials (and vice versa): from semiconductors to aerospace applications


Ionized gases, also known as “plasmas”, play an important role in a wide range of natural phenomena and engineering applications, including spacecraft electric propulsion, hypersonic flows, fusion energy, and material processing. In this talk, I will discuss the opportunities and challenges in plasma science and engineering, focusing on how plasmas can help material processing and how materials help plasma transport and chemistry. For instance, the radicals and ions generated from a plasma discharge are used for etching and deposition in the semiconductor industry. In spacecraft electric propulsion, ions are accelerated and ejected in space to move a spacecraft. Simultaneously, generation (reaction, chemistry) and transport (acceleration, diffusion) mechanisms of the plasmas are influenced by the presence of materials that confine the plasmas. Better understanding of the nonlinear coupling between plasmas and materials can therefore help optimize existing engineering systems, design new capabilities, and enable new science and technology. I will present an overview of experimental and computational capabilities that are used to measure and predict the complex nonlinear processes of plasma flows and plasma-material interactions.



February 15th, Dr. Georgi Trenchev: Industrial decarbonization through state-of-the-art atmospheric plasma

Dr. Georgi Trenchev

Dr. Georgi Trenchev is CTO and co-founder of D-CRBN. He obtained his BSc and MSc at the Physics Faculty of University of Sofia, Bulgaria, followed by a PhD at the University of Antwerp, Belgium, under the supervision of Prof. Annemie Bogaerts. He has over 20 journal publications in the fields of plasma-based gas conversion, reactor engineering and plasma modeling. He frequently reviews submissions for Journal of CO2 utilization, Chemical Engineering (Elsevier) and Plasma Sources Science and Technology (IOP). In 2023, he was awarded the Innovation Prize by the European Physical Society, together with Annemie Bogaerts.

Presentation Title

Industrial decarbonization through state-of-the-art atmospheric plasma


Gas conversion by the means of plasma is a hot topic not only in the academic setting anymore, but also in the chemical, oil and environmental industries. This is largely driven by the climate mitigation efforts, but also by the evident pathways of value creation by converting greenhouse gases such as CO2 and CH4 into useful chemical feedstocks. The answer to this demand is D-CRBN, an innovative spin-off from the research group PLASMANT at the University of Antwerp in Belgium. This seminar reviews the step-by-step process of bringing a lab-scale plasma reactor to a pilot-scale gas conversion system, starting from decade-long academic research.


March 14th, Dr. Josiane Lafleur -EMILIE - Nanomechanical infrared sensing for nanoparticle characterization

Dr. Josiane Lafleur

Bio: Josiane P. Lafleur holds a doctorate degree in chemistry from McGill University (Canada). She worked for several years in research and academia, first as a postdoctoral fellow at the Technical University of Denmark and then as an Assistant Professor at the University of Copenhagen (Denmark). In 2018, she decided to take the plunge and co-founded the TU Wien spin-off Invisible-Light Labs GmbH. 

Presentation Title EMILIE - Nanomechanical infrared sensing for nanoparticle characterization

Thanks to their unique physical, chemical, and biological properties, nanomaterials and nanoparticles have found a wide range of applications such as in drug delivery, cosmetics, foods, and much more. However, they also pose a potential threat to human health and the environment, as they may enter our water, air, and food chain. Detecting and characterizing nanoparticles remains a major challenge of our modern society. It’s been the breakthrough of our research team at TU Wien to apply the nanomechanical point of view to the world of optics to create a radically new infrared (IR) detector especially suited to the analysis of nanomaterials. EMILIE, our nanomechanical IR detector has the potential to play a crucial role in ensuring the safe and responsible use of nanomaterials and nanoparticles, while also providing valuable insights into their fundamental properties and behaviour. Josiane will present the principles behind EMILIE's exceptional sensitivity as well as  share Invisible-Light Labs' experience in translating academic research to market..



Supported by


( project code 18014455)

Share this page:

Seminar on Material R&T

Register here

Practical Infos

Date: 14 March 2024

Schedule: 03:00 p.m to 04:00 p.m

Location: LIST, 41, rue du Brill - L-4422 Belvaux

Attendance either virtual of physical.

By registering the participants will have the possibility to meet with the speaker. Appointments could be made and will depend on the number of places available. You will be contacted before the event in order to organise the meeting.


 Alexandros GERAKIS
Alexandros GERAKIS
Send an e-mail
Register here