Damage evolution in flax fibre composite under creep load


Hao J., Prapavesis A., Lomov S.V., Fuentes C.A., Willem Van Vuure A.


Composite Structures, vol. 329, art. no. 117786, 2024


This work aims to reveal the damage mechanisms and evolution in unidirectional flax fibre biocomposites when subjected to creep load. X-ray micro computed tomography and acoustic emission (AE) was used to monitor the failure progress during flexural creep tests. A correlation between the event clusters and directly observed damage modes was established based on coupons with expected failure mechanisms and then validated by computed tomography observations. The damage initiated from matrix cracking in the primary creep stage, and then fibre–matrix interface debonding combined with fibre pull-out occurred sequentially during the steady creep stage. In the tertiary creep stage, the explosive fibre fracture emerged and eventually triggered catastrophic failure. Considerably more AE events were detected during creep tests compared to those in quasi-static tests, which indicates that intensive damage is generated under creep load, and therefore causes the strength degradation. A good agreement was observed between the cumulative number of AE events and the increasing damage volume fraction over time determined by X-ray micro computed tomography during multi-step creep tests.



Share this page: