High-contrast imaging of 180 degrees ferroelectric domains by optical microscopy using ferroelectric liquid crystals

Authors

G.F. Nataf, M. Guennou, G. Scalia, X. Moya, T.D. Wilkinson, and J.P.F. Lagerwall

Reference

Applied Physics, vol. 116, no. 21, 2020

Description

Ferroelectric liquid crystals (FLCs) couple the direction of their spontaneous electric polarization to the direction of tilt of their optic axis. Consequently, reversal of the electric polarization by an electric field gives rise to an immediate and lasting optical response when an appropriately aligned FLC is observed between crossed polarizers, with one field direction yielding a dark image and the opposite direction yielding a bright image. Here, this peculiar electro-optic response is used to image, with high optical contrast, 180 degrees ferroelectric domains in a crystalline substrate of magnesium-doped lithium niobate. The lithium niobate substrate contains a few domains with upward electric polarization surrounded by regions with downward electric polarization. In contrast to a reference non-chiral liquid crystal that is unable to show ferroelectric behavior due to its high symmetry, the FLC, which is used as a thin film confined between the lithium niobate substrate and an inert aligning substrate, reveals ferroelectric domains as well as their boundaries, with strong black and white contrast. The results show that FLCs can be used for non-destructive readout of domains in underlying ferroelectrics, with potential applications in, e.g., photonic devices and non-volatile ferroelectric memories.

Link

doi:10.1063/5.0008845

Share this page: