

Unlocking the full potential of complementary data streams during the Harvey flood disaster Integration of EO, modeling and social media

Guy SCHUMANN, RSS-Hydro (L)

Patrick MATGEN, LIST (L)

R. Pelich, E. Brangbour, P. Bruneau, M. Chini, R. Hostache, T. Tamisier

Luxembourg Earth Observation and Integrated Applications Day

Space Applications in Environmental Management

April 19 2018

Motivation

- Floods are extremely disruptive & increasing in annual cost
- Resilience of many societies is still relatively low
- Response & recovery are still not supported by all available data; yet many data streams and products are available
- More research & innovation are needed to make products and services more interoperable & actionable
- Need to work with emergency management & response teams for effective valorization of EO products and services during disasters and elsewhere

Harvey: Putting America to the Test!

Many Data Streams

Sep 2 onward

~40 cms

Discharge measurements

Sep 1

EO data (S1 & S2)

Flood inundation model

GFP activation

0%-

https://gpod.eo.esa.int/

S-1 Flood Mapping

 Consultation of data collection w.r.t. to ECMWF-based simulations of flood inundation

- Manual selection of "flood images" from ESA data collection
- "on demand" flood mapping
- Download of results

Interested in using this ESA G-POD service? Just email hasard@list.lu

A Social Media Probability Flood Map

Wed Aug 30 16:29:14 +0000 2017

Flood Inundation Prediction

- Simulation of 2-D LISFLOOD-FP model using sub-grid channel mode, using USGS NED-DEM and NHD+ river network aggregated to 100 m cells.
- Diagnostic forecast setup: NOAA River Forecast Center flow predictions; USGS measured Q & ECMWF forecast rain fields.
- Storm surge levels from NOAA at downstream coastal outlet of Colorado River included but effect is negligible

Selected ROI: Colorado River, TX

At the Wharton flood level gauge, the "best" model simulates channel levels to within 30 cm on peak on 31 Aug

Data Stream Inter-Comparison

Sentinel-1

Fairly good agreement of optical EO, radar EO and model, but:

- SAR under-detects in densely vegetated areas and urban areas
- Model tends to overestimate extent of flooding when topography not well represented (cf. "tipping points")

Twitter-derived flood information difficult to geo-localize as they refer to a city or a neighbourhood

Bringing it all together!

k = # successes

n = # trials (n=1)

Simulated

Water pixel

 $p(k,n \setminus \Theta) = \binom{n}{k} \Theta^k (1 - \Theta)^{n-k}$ MODEL_{t,i} Attributing weights to $w_{1,1}^{t,i} = \Theta_{1,1}$ 1 0 ensemble members based on their similarity to observation data 0 1 1 1 0 0 **Observation** $\Theta_{1,1}$ $\Theta_{1,2}$ $\Theta_{1,3}$ $W_{1,2}^{t,i}$ $W_{1,3}^{t,1}$ $W_{1,1}^{t,i}$ $W_{2,1}^{t,i}$ $W_{2,2}^{t,i}$ $W_{2,3}^{t,i}$

 $W_{3,1}^{t,i}$

 $W_{3,2}^{t,i}$

 $W_{3,3}^{t,i}$

Θ_{2,3}

 $\Theta_{3,3}$

Θ_{2,2}

Θ_{3,2}

 $\Theta_{2,1}$

 $\Theta_{3,1}$

Conditional probability : binomial pdf

Concluding Notes

- One of the best covered disasters in terms of open-access data
- Globally and freely available data sets combined with modern IT enable simulating floods at large scale,
- Advanced image processing allow reducing classification uncertainties in risk-prone areas,
- Photos and texts social networks data complement EO and in-situ data and augment information content.

Next Steps:

- Fully exploit data sets to detect water bodies in built up environments,
- Need to better characterize classification uncertainties,
- Geo-localize social media data more precisely,
- Fully realize potential to jointly extract and assimilate into prediction model information from multiple sources.

Thanks!

Supported by

