SCALER

Assessment of the added value of the <u>CAMS</u> air quality forecasting products for Luxembourg

Forest use case

Ivonne Trebs, Philippe Pinheiro, Jürgen Junk

TABLE OF CONTENTS

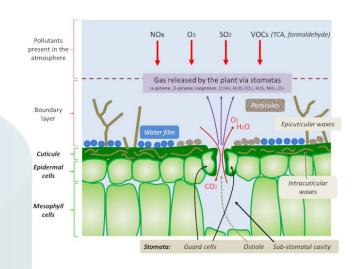
Introduction & synergies

19 Use case context & idea

Link to heat stress & drought events

Stakeholder needs and requirements

INTRODUCTION


INSTITUTE OF SCIENCE AND TECHNOLOGY LIST

- Identify stakeholder needs
- Potential impact on stakeholder workflows
- **Functionalities**

- Filtering of air pollutants vs. deposition of air pollutants exceeding critical values damage forest ecosystems (use of indices, e.g. AOT40)
- Providing information on changes in air quality during periods of severe drought

stakeholders / public administrations / forest managers

- → A user-friendly data platform ensures that real-time air quality information is accessible to forest managers (protection and sustainability goals)
- → Tracking long-term pollution trends affecting forests based on CAMS data and in-situ air quality records help identify long-term impacts of pollution on forests

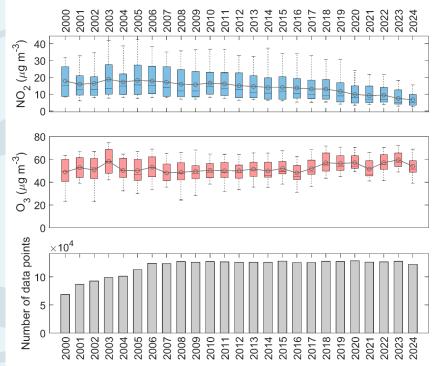
SYNERGIES

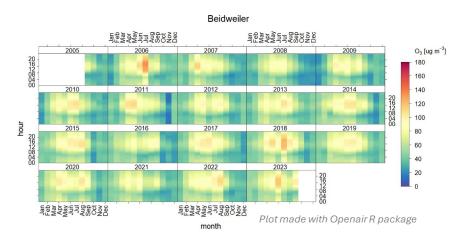
FORLUX project: Health, adaptation and sustainability of forests in the context of climate change: impact of drought intensification and sustainability of forest ecosystems in the City of Luxembourg.

- → Implementation of a long-term observatory including air quality (NO₂, O₃, NH₃)
- → https://www.list.lu/en/environment/project/forlux/

<u>FORFUS</u> project: Doctoral training unit (Forest function under stress)

- → Evaluation of O₃ and NH₃ dry deposition to forest under drought conditions
- → https://www.list.lu/en/environment/project/forfus/





CONTEXT FOCUS ON O3

Statistical distribution of NO₂ and O₃ across 15 stations in the Greater region from 2000 to 2024.

- → O₃ levels constant despite declining NO₂
- persistent air quality, ecosystem and health problem in the region

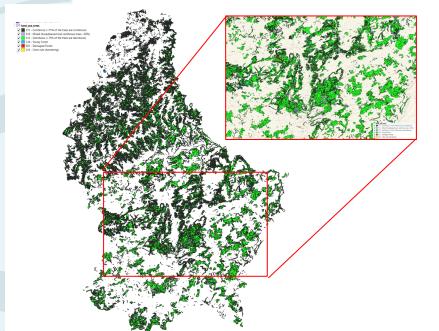
IDEA

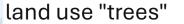
Processing:

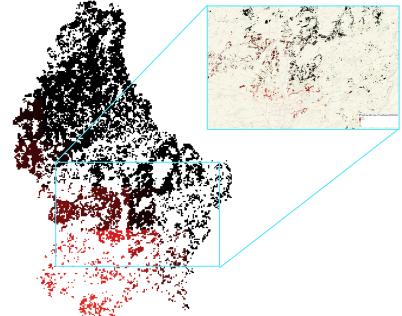
- 1. Compute AOT40 value for each forest area in Luxembourg
- 2. Compare the calculated AOT40 values with the critical threshold values for forests (EU guidelines)
- 3. Identify risk areas where forests are exposed to harmful O_3 levels
- Overlay AOT40 data with forest type maps (e.g., coniferous vs. deciduous forests) → use available land cover data from geoportail LU
- 5. Correlate ozone exposure with stress symptoms or growth reductions in specific forest areas
- 6. Optional: Include information on drought

Results:

- Map of AOT40 values across Luxembourg
- Risk classification of ozone exposure (low / medium / high) depending on forest type
- Time series of AOT40 development at selected location

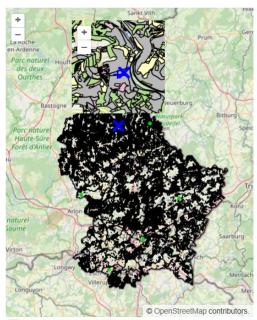


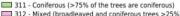




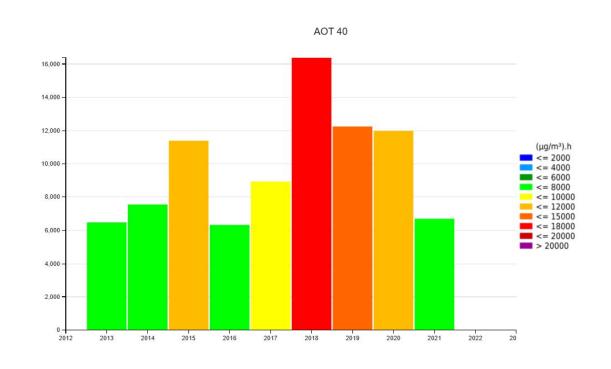
IDEA — LAND USE & AOT40 MAPPING IN DSS

AOT40 for coniferous forest areas computed from reanalysis data



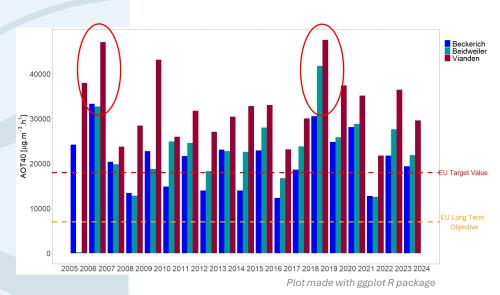


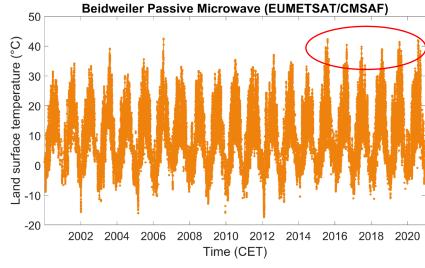
IDEA — ZOOM APPLICATION IN THE DSS



Ensemble Reanalysis

- 312 Mixed (broadleaved and coniferous trees >25%)
- 313 Deciduous (>75% of the trees are deciduous)
- 314 Young Forest
- 321 Damaged Forest





LINK TO HEAT WAVES AND DROUGHT EVENTS

AOT40 from observations at rural locations from official network (AEV)

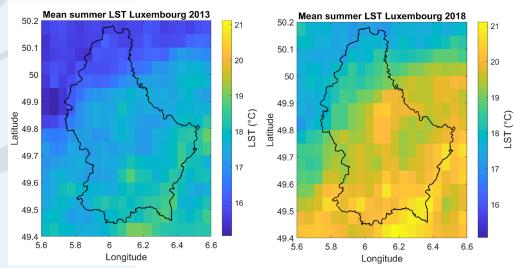
Spatial resolution: $0.05^{\circ} \times 0.05^{\circ} -> Grid cell over$

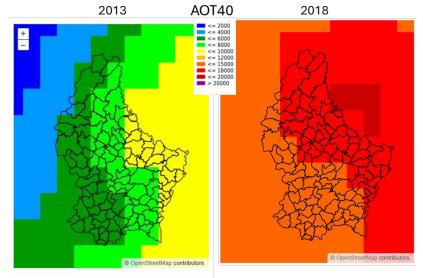
Beidweiler extracted

Data source: MVIRI/SEVIRI on METEOSAT

EUMETSAT/Satellite Application Facility on Climate

Monitoring (CM SAF)





COMBINED THREAT FOR FORESTS

Positive LST anomalies indicate soil moisture deficits and vegetation stress. When combined with air quality data, it can provide a powerful, spatially continuous tool for monitoring and assessing forest damage risk.

- \rightarrow Summer drought link with elevated O₃ concentrations (AOT40)
- → Air quality intersected with forest health status, with sampling for each forest (locations and data needed)
- → Influence of geology on forest condition (especially clay soils), input of old beeches in the last 3–4 years
- → Use of nationwide forest condition using LiDAR (what is the temporal resolution?)
- → Filter function, areas of lower pollutant concentration over forests, intersected with land-use maps (ecosystem services of urban forests)
- → Difference between managed and unmanaged forests

thank you

