Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization

12/05/2015

Auteurs

B. Xu, D. Wang, H. J. Zhao, J. Íñiguez, X. M. Chen, and L. Bellaiche

Référence

Advanced Functional Materials, vol. 25, no. 24, pp. 3626-3633, 2015

Description

The so-called hybrid improper ferroelectricity (HIF) mechanism allows to create an electrical polarization by assembling two nonpolar materials within a superlattice. It may also lead to the control of the magnetization by an electric field when these two nonpolar materials are magnetic in nature, which is promising for the design of novel magneto-electric devices. However, several issues of fundamental and technological importance are presently unknown in these hybrid improper ferroelectrics. Examples include the behaviors of its polarization and dielectric response with temperature, and the paths to switch both the polarization and magnetization under electric fields. Here, an effective Hamiltonian scheme is used to study the multiferroic properties of the model superlattice (BiFeO3)1/(NdFeO3)1. Along with the development of a novel Landau-type potential, this approach allows to answer and understand all the aforementioned issues at both microscopic and macroscopic levels. In particular, the polarization and dielectric response are both found to adopt temperature dependences, close to the phase transition, that agree with the behavior expected for first-order improper ferroelectrics. And most importantly, a five-state path resulting in the switching of polarization and magnetization under an electric field, via the reversal of antiphase octahedral tiltings, is also identified.

Lien

DOI: 10.1002/adfm.201501113

Partager cette page :