Storage controls on the generation of double peak hydrographs in a forested headwater catchment

Auteurs

N. Martínez-Carreras, C. Hissler, L. Gourdol, J. Klaus, J. Juilleret, J. F. Iffly, and L. Pfister

Référence

Journal of Hydrology, vol. 543, part B, pp. 255–269, 2016

Description

Double peak hydrographs are widespread phenomena but poorly understood mechanistically. In many cases, saturation-excess overland flow in the near-stream areas is assumed to control the initial peak, while the delayed peak is explained by subsurface flow in the soil or sediment cover or groundwater flow on fractured bedrock. Here we explore the mechanisms that control the generation of double peak hydrographs in a forested headwater catchment. We made use of the extensive high-resolution hydrometric time series collected in the catchment to estimate catchment storage and causal linkages. We found that double peak hydrographs occurred only after a certain amount of catchment storage was exceeded. The amount of this storage threshold was consistent over a 3-year period. The non-linear relationship between storage and discharge led to hysteretic relationships between both variables, and these hysteretic relationships were different for the different hydrograph types (single or double peak hydrographs). Discharge peaked before catchment storage during single peak hydrographs suggesting that single peaks were mainly generated by water quickly reaching the stream during precipitation pulses. It was catchment storage that peaked first during double peak hydrographs and consequently generated the delayed peak in the hydrograph. Our results also showed that double peak hydrographs were controlled in different proportions by contrasting landscape units (defined along a hillslope sequence). Hillslopes were connected to the stream at low discharge values, whereas the plateau dominated discharge generation when storage reached a certain threshold value.

Lien

doi:10.1016/j.jhydrol.2016.10.004

Partager cette page :